Exploring Short Range Correlations

Inclusive Scattering from Nuclei at x > 1 in the quasielastic and deeply inelastic regimes

K. CRAYCRAFT

17 JUNE 2015

Overview

- Quasielastic and Deep Inelastic Scattering
- Bjorken x
- Parton distribution function
- High Momentum Nucleons
- Short Range Correlations
- Experiment
- References

Quasielastic vs Deep Inelastic

Quasielastic: Scatter from **nucleons** in nucleus

Deep Inelastic: Scatter from **quarks** in nucleons

Bjorken x

DIS probes partonic (quark) structure of hadrons

Inclusive scattering at x>1 probes

Parton Distribution Function

- Parton distribution function for the proton
 - ► x is longitudinal momentum fraction
- PDF gives probability of finding a particular parton having a particular momentum fraction of the nucleon
- $\lambda = \frac{h}{\sqrt{Q^2}}$ wavelength of virtual proton, which sets the scale for probe
 - Q^2 inc, λ dec to probe quarks

High Momentum Nucleons

6

 Tail of momentum distribution a result of hard interactions between nucleons inside nucleus (Short Range Correlations)

High Momentum Nucleons

- High momentum nucleons have k>k_{fermi}
- Similar shape
- Calculable for nuclei up to 12C

8

Short Range Correlations (SRCs)

- To probe SRC must be in the highmomentum region $(x_b > 1)$
 - ► For a free nucleon $x_b \le 1$, but momentum is shared between nucleons giving a max of $\approx A$
- $\sigma(x, Q^2) = \sum_{i=1}^{A} A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$
 - ► $a_j(A)$ const. \propto prob. of nucleon being in j-nucleon correlation
 - σ_j(x, Q²) cross section of scattering from j-nucleon correlation

Short Range Correlations (SRCs)

$$\frac{\sigma_A(x, Q^2)}{\sigma_D(x, Q^2)} \frac{2}{A} = a_2(A)$$

> 2N correlations, 1.4 < x < 2

$$\frac{\sigma_A(x, Q^2)}{\sigma_{A=3}(x, Q^2)} \frac{3}{A} = a_3(A)$$

> 3N correlations, 2.4 < x <3

► Jlab 12 GeV's upgrade has allowed to explore a greater range of Q^2 and x_B

- My experiment: E12-06-105
 - Inclusive Scattering from Nuclei at x>1 in the Quasielastic and Deep Inelastic regimes
 - Data to be taken on 11B, 10B in 2016 during Hall C commissioning

SRCs

 Strategically chosen targets in order to probe possible correlation between EMC and SRC

Experiment: SHMS

Nobel Gas Cherenkov

- Wire Chamber
- Hodoscope
- Heavy Gas Cherenkov
- Calorimeter

References

- Short-Distance Structure of Nuclei. DW Higinbotham, E. Piasetzky, SA Wood. August 2009. June 2015. https://iopscience.iop.org/1742-6596/299/1/012010/pdf/1742-6596_299_1_012010.pdf
- C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53 (1996).
- Single-Nucleon Momentum Distributions. ANL. September 2014. June 2015. <u>http://www.phy.anl.gov/theory/research/momenta/</u>
- Research prespectives at Jefferson lab: 12 Gev and beyond. Kees de Jager. February 2004.
- https://userweb.jlab.org/~johna/proposal/proposal/node4.html

Extra: More on Scattering

Energy transfer	Type of scattering	Electron
Low	Elastic	Interacts with entire nucleus (x \sim A)
Medium	Quasielastic	Knocks out nucleon (x =1)
High	Inelastic	Nucleon excited into higher energy state (x < 1)
Very High	Deep Inelastic	Interacts with a single quark ($x < 1$)

Extra: EMC Effect

- Slope of EMC effect differs depending on A
 - Fit slope of ratios $0.3 \le x_B \le 0.7$
 - Same overall shape of for all A
 - Depth at minimum depends on nuclear mass- Is EMC due to average density?
- EMC is measure of medium modification of quark distributions

Extra: Experiment

Parameter	SHMS Specification	HMS Performance
Central momentum range	2.5 - 11 GeV/c	0.4 - 7.3 GeV/c
Scattering angle range	5.5° - 25°	$10.5^{\circ} - 90^{\circ}$
Momentum acceptance	-15 to +25%	$\pm 10\%$
Momentum resolution	< 0.2%	0.1%
Angular acceptance	2 msr (SSA tune)	6.7 msr
	4 msr (LSA tune)	
Angular resolution (hor)	2-4 mrad	0.8 mrad
Angular resolution (ver)	1-1 mrad	1 mrad
Target length acc. (90°)	50 cm	10 cm
Vertex resolution	0.2-0.6 cm	0.3 cm
Maximum DAQ rate	10 kHz	2 kHz
e/h Discrimination	10^3 at 98%	10^3 at 98%
π/K Discrimination	100 at 95%	100 at 95%

